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ABSTRACT Among the most studied mammals in terms of their role in the spread 
of various pathogens with possible zoonotic effects are bats. These are animals with 
a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus 
maintaining and spreading the pathogens they may be carrying. These pathogens also 
include vector-borne parasites and bacteria that can be spread by ectoparasites such 
as ticks and bat flies. In the present study, high-throughput screening was performed 
and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis 
and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from 
bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were 
able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phyloge
netic diversity, demonstrating the importance of these mammals and the arthropods 
associated with them in maintaining the spread of pathogens. Previous studies have also 
reported the presence of these pathogens, with one exception, Neoehrlichia mikuren
sis, for which phylogenetic analysis revealed less genetic divergence. High-throughput 
screening can detect more bacteria and parasites at once, reduce screening costs, and 
improve knowledge of bats as reservoirs of vector-borne pathogens.

IMPORTANCE The increasing number of zoonotic pathogens is evident through 
extensive studies and expanded animal research. Bats, known for their role as reservoirs 
for various viruses, continue to be significant. However, new findings highlight the 
emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from 
bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in 
bat blood and ectoparasites raise concerns, as their impact remains uncertain. These 
discoveries underscore the urgency for heightened vigilance and proactive measures 
to understand and monitor zoonotic pathogens. By deepening our knowledge and 
collaboration, we can mitigate these risks, safeguarding human and animal well-being.
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B ats are the only mammals that can actively fly. There is a large number of spe
cies distributed worldwide and divided into two suborders: Yinpterochiroptera 

and Yangochiroptera (1). The bat species found in Europe and especially in Romania 
belong to both suborders (2, 3). Due to their life history, behavior, foraging, and 
ability to migrate over long distances, they can be the “perfect” reservoirs for vari
ous pathogens (4). Several viral diseases that affect humans and livestock have been 
linked to bats as reservoirs (5–7). Bacterial and parasitic diseases are also known 
to be transmitted from these mammals to humans or domestic animal populations, 
with possible effects on their health (8–12). Among these, the genus Bartonella spp. 
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is a Gram-negative facultative intracellular α-proteobacterium found in mammalian 
erythrocytes and endothelial cells (13). While some species are known to be 
pathogenic to humans (e.g., Bartonella henselae, B. quintana, B. grahamii, and B. 
washoensis) (14–19), others are newly described and their pathogenicity is still unclear 
(e.g., B. mayotimonensis) (20). The exact role of bats as carriers or reservoirs of different 
species of Bartonella is still unclear and undetermined, but this role is being studied very 
intensively. This bacterial pathogen is the most studied in various samples collected from 
bats: tissues (21, 22), ticks (23, 24), bat flies (25–28), and bat bugs (29). A newly described 
species of Bartonella—“Candidatus B. mayotimonensis,” which has been associated with 
cases of endocarditis in human patients from the USA (30) was also isolated from bat 
samples collected in Europe (20, 22, 31).

Due to the growing number of people in the world and their close contact with 
animals, more and more pathogens with a possible zoonotic potential are being 
described. This is also the case with Neoehrlichia mikurensis, a pathogen that is transmit
ted by ticks of the genus Ixodes, especially I. ricinus (32, 33). This bacterial pathogen was 
first found in the spleen of rats from Japan and in I. ovatus ticks (32). Later, the first 
evidence was documented in a human patient in Sweden, followed by other European 
countries (33, 34). Studies on the epidemiology and detection of this bacterium reported 
its presence in various species of hard ticks, like Ixodes spp. (35–39), in Dermacentor 
reticulatus (38), in wildlife (40–43), and in domestic animals (38, 39, 44, 45), and also 
in humans (46–48). The main reservoirs for N. mikurensis are probably various rodent 
species (49). There are no studies reporting the presence of this bacterial pathogen in bat 
species.

Hemotropic mycoplasmas, also called hemoplasmas, are Gram-negative bacteria of 
the genus Mycoplasma, found on the surface of mammalian erythrocytes and are 
transmitted by contact with droplets of nasal and oral secretions (50). There are studies 
of the occurrence of different Mycoplasma species in wild animals (51, 52), domestic 
animals (53), and humans with varying degrees of pathogenicity (54). The first report 
of Mycoplasma in bats comes from the little brown bat (Myotis lucifugus) from the USA 
(55). Later, various studies reported the presence of mycoplasmas in bats from Africa 
(56), Asia (57), Central and South America (58–61), and Europe (62, 63). Sequences of 
mycoplasmas isolated from bats in Spain showed that they are closely related to the 
species “Candidatus Mycoplasma hemohominis” (64), which has also been isolated from 
humans in different parts of the world (65–68).

Protozoan parasites (e.g., Babesia spp. and Theileria spp.) are emerging tick-borne 
zoonotic pathogens (69, 70). They are one of the most widespread blood parasites 
in the world after trypanosomes and malaria and have significant economic, medical, 
and veterinary implications (71–75). In bats, the first report of protozoan parasites 
(e.g., Babesia vesperuginis) was published in Italy in 1898, followed by several studies 
describing a similar parasite in various bat species (76–80). Different species of Babesia 
and Theileria were already detected in bat-specific ticks (e.g., I. ariadnae, I. vespertilionis, 
and I. simplex) collected in Hungary and Romania (81).

Vector-borne bacterial and parasitic pathogens are usually detected using molecu
lar biology [conventional PCR (cPCR), nested PCR (nPCR), or reverse transcription PCR 
(RT-PCR)], in which one or more genes are targeted to assess the presence or absence 
of that specific pathogen. Although these methods are most commonly used, they 
are time-consuming and resource-intensive. A new approach is microfluidic analysis, in 
which multiple pathogens targeting one or more genes can be determined at once 
(82–85). Considering the advantages of this analysis, the objectives of the present study 
were the following: (i) high-throughput screening of pathogens, (ii) pairing bat-arthro
pod samples, and (iii) phylogenetic and haplotype divergence analysis of commonly 
occurring pathogens in bats and their parasites.
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RESULTS

Detection of pathogens in blood collected from insectivorous bats

A total of 48 blood samples from two different bat species (Miniopterus schreibersii: 
n = 39 and Myotis capaccinii: n = 9) were analyzed by high-throughput microfluidic 
real-time PCR. For the presence of four pathogens, the positive samples for RT-PCR were 
validated by cPCR or nPCR (Table S1). All pathogen groups tested were detected, as 
follows: Apicomplexa (2.08% of the total number of blood sample tested), Bartonella 
spp. (16.66%), Neoerlichia mikurensis (10.41%), and Mycoplasma spp. (12.5%) (Table 2). 
Samples from the bat species M. schreibersii were positive for all four pathogens, while 
samples from Myotis capaccinii were positive only for Bartonella spp. (Table 1).

Detection of pathogens in ectoparasites collected from bats (ticks and bat 
flies)

By high-throughput microfluidic real-time PCR, 80 ectoparasites were analyzed (ticks: n = 
20 and bat flies: n = 60) (Table S1). All ticks belonged to a single species, Ixodes simplex, 
the host-specific parasite of M. schreibersii (86), while nycteribiids belonged to three 
species, Nycteribia pedicularia (specific parasite of My. capaccinii), Nycteribia schmidlii, 
and Penicidillia conspicua [both species-specific parasites of M. schreibersii (87)]. The 
positive samples were paired with those from the blood that were positive and analyzed 
further. From the same four pathogens tested, only two were detected in the respective 
host-and-ectoparasite pairs: Bartonella spp. was present in two bat fly species (Nycteribia 
pedicularia and Nycteribia schmidlii) and their respective host, while Mycoplasma spp. was 
detected in a single tick larva (I. simplex) and its hosts (an M. schreibersii individual from 
Canaraua Fetii; Table 2).

Phylogenetic analysis

Blasting of obtained sequences of 16S rRNA of Anaplasmataceae against National 
Center for Biotechnology Information GenBank database showed their similarity to 
N. mikurensis and were clustered together with sequences reported from European 
counties, for example, Poland (KJ123754), Slovakia (KJ649323), Slovenia (KJ408793) and 
also from the Far East, South Korea (MF351962) (Fig. S1). Sequenced sample of Apicom
plexa obtained in this study should be recognized as Theileria orientalis and showed 
high similarity of nucleotide position to other T. orientalis sequences reported from 
China (MH208641), Austria (AB520955), and Turkey (OM066208) (Fig. S2). In the case of 
Mycoplasma 16S rRNA gene, sequenced samples clustered together with Mycoplasma 
spp. sequences reported from Hungary (MH383150 and MH38315) and Spain (KM538698 
and KM538692) (Fig. S3). Bartonella sequences obtained in the current study were 
clustered together with sequences of Bartonella spp. (e.g., MF288131 and KY232247), 
B. washoensis (e.g., AB674225 and MH547360), and B. henselae (e.g., MT095055 and 
KC422265) (Fig. S4).

Of all the bacteria/piroplasms sequenced in the current study, N. mikurensis had the 
lowest genetic divergence. All sequenced N. mikurensis samples belong to the same 
haplotype (H1). Moreover, the same haplotype was found in other sequences downloa
ded from GenBank derived from different groups of organisms like mammals (Chirop
tera and Rodentia) or arthropods (different Ixodidae species) (Fig. S5). Phylogenetic 
and genotype analyses of other sequenced samples confirmed that they may circulate 
between several reservoir and vector organisms. Theileria orientalis is most often found in 
Chiroptera, Bovidae, and Ixodidae (Fig. S6). Mycoplasma spp. (Fig. 1) and Bartonella spp. 
(Fig. 2) are characterized by high diversity inside respective reservoir organism groups; 
however, most often circulate between Chiroptera, Ixodidea, Felidae, and Nycteribiidae 
(Fig. 1 and 2).
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DISCUSSION

Our aim was to pair positive host-derived blood samples with positive samples of 
ectoparasites (ticks and bat flies) to determine the reservoir/vectorial role and main
tenance routes of pathogens between these two. In the present study, high-through
put real-time microfluidic PCRs were used to detect various bacterial and protozoan 
pathogens in the blood and ectoparasites of bats from Romania. Phylogenetic analysis 
was also performed to assess the phylogenetic and haplotype divergence analysis of the 
pathogens detected. By confirmatory PCRs, we detected the presence of three bacterial 
pathogens and one protozoan parasite. While Bartonella (88), Mycoplasma (64), and 
Theileria (81) have already been detected in bat samples, this is, as far as we know, the 
first report of N. mikurensis in the blood of insectivorous bats in Europe.

Due to the great diversity of bat species, the different roosts, and the types of diet, 
several studies aimed to detect various pathogens, especially Bartonella. Various species 
and strains of Bartonella spp. have been detected from the blood (88, 89), tissue (21, 
90), and ectoparasites (91, 92) of bats around the world. The molecular methods used 
to detect these bacteria are generally cPCR and quantitative PCR, targeting especially 
the gltA gene (better detection of genotype diversity and the number of sequences 
available in GenBank is higher) (78, 93, 94), the rpoB, ftZ, and nuoG genes, alone or 
in the combination of several genes (95, 96). By confirmatory PCRs, we targeted the 
ITS gene, which also was used in bat samples (97–99). As Stuckey et al. (22) have 
shown, the prevalence of Bartonella infection in bat samples (blood or tissue) can vary 
between different bat families, with the highest prevalence for insectivorous bats found 

TABLE 1 Detection of pathogens in bat samples

Type of sample Pathogen 
detected

Bat species Ectoparasite/development 
stage

Location Accession numbers

Host tissue Apicomplexa Miniopterus 
schreibersii - Galeria din Pădure-Canaraua Fetii

OQ255847

Neoerlichia 
mikurensis

Miniopterus 
schreibersii

-

Baziaş;
Peştera Liliecilor;
Gura Dobrogei;
Galeria din Pădure-
Canaraua Fetii

OP999371–
OP999375

Bartonella spp.

Miniopterus 
schreibersii

-

Baziaş;
Peştera Liliecilor;
Gura Dobrogei;
Ineu

OQ054993–
Q054994
OQ055003–
Q055004
OQ055009
OQ055014

Myotis capaccinii
-

Baziaş OQ054995–
OQ054996

Mycoplasma spp. Miniopterus 
schreibersii -

Baziaş;
Galeria din Pădure-Canaraua Fetii

OQ274904-
OQ274909

Bat flies

Bartonella spp.

Miniopterus 
schreibersii

Nycteria schmidlii/
adult

Baziaş;
Peştera Liliecilor;
Gura Dobrogei;
Galeria din Pădure-Canaraua Fetii

OQ054997–
OQ055002
OQ055005–
OQ055008
OQ055010–
OQ055013

Myotis capaccinii Nycteria pedicularia/
adult

Baziaş OQ054997
OQ055006
OQ055007

Ticks Mycoplasma spp. Miniopterus 
schreibersii

Ixodes simplex/larva Galeria din Pădure-
Canaraua Fetii

OQ274910
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in the family Miniopteridae (up to 54%). In our study, of the eight positive samples by 
confirmatory PCRs, six belonged to the bat species M. schreibersii and two to the bat 
species My. capaccinii. This confirms a higher prevalence for the family Miniopteridae, 
which was also observed in a study from Japan, South Africa, and Swaziland (100). 
Regarding the type of diet, hematophagous or carnivorous bats harbor more Bartonella 
strains and species than bats with other diets (101–104) and may maintain infection 
or transmit different Bartonella strains between different vertebrate hosts (102). Since 
we only have insectivorous bats in Europe, the probability of becoming infected with 
Bartonella is higher than in Africa or America, as it was suggested previously (105). 
All known Bartonella species are transmitted between hosts by different arthropods 
(15, 106, 107). This bacterium was initially considered an endosymbiont of arthropods 
and is thought to maintain a commensal relationship with its arthropod host. Bats 
have been shown to be an important reservoir for Bartonella and they probably have 
evolved together (108). This is also supported by the phylogenetic analysis of the current 
study (Fig. 2). Regarding the occurrence of this bacterial pathogen in bat ectoparasites 
(bat flies, fleas, mites, ticks) (105, 107), studies have determined the prevalence and 
phylogenetic relationships between them and bats. As for bat flies collected and tested 
especially in Europe, a high prevalence of Bartonella strains was found mainly in the N. 
schmidlii, N. kolenatii, N. pedicularia, and P. conspicua (28, 109, 110). This is also confirmed 
by phylogenetic analyses (Fig. 2). We also identified different strains of Bartonella in 
two bat fly species (N. schmidlii and N. pedicularia) collected from two insectivorous 
bat species (M. schreibersii and My. capaccinii) at three sites in Romania. Both Nycteribia 
species are highly specialized and host-specific, thus they likely will transmit individual 

FIG 1 Phylogeny and genotype analysis of Anaplasmataceae inferred from 16S rRNA depending on host reservoir species. The evolutionary history was inferred 

by using the maximum likelihood method and the Tamura Nei-parameter model. The analysis contains sequences identified in the current study (bold) and 

GenBank sequences. Accession numbers of sequences are given. Bootstrap values are represented as percentage of internal branches (500 replicates), and values 

lower than 60 are hidden. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 33 nucleotide 

sequences. There were 406 positions in the final data set. H, haplotype. The diagonal lines indicate the number of mutations between the haplotypes.
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FIG 2 Phylogeny and genotype analysis of Bartonella spp. inferred from 16S rRNA depending on host reservoir species. The evolutionary history was inferred by 

using the maximum likelihood method and the Kimura 2-parameter model. The analysis contains sequences identified in the current study (bold) and GenBank 

sequences. Accession numbers of sequences are given. Bootstrap values are represented as percentage of internal branches (500 replicates), and values lower 

than 60 are hidden. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 66 nucleotide 

sequences. There were 74 positions in the final data set. H, haplotype. The diagonal lines indicate the number of mutations between the haplotypes.
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Bartonella spp. strains, too. Our results confirmed this hypothesis, as we found a single, 
but ectoparasite/host-specific strain both in the samples of the two different flies, as well 
as in the blood samples of their respective hosts (see Fig. S4). The diversity and similarity 
of Bartonella strains have already been demonstrated in bats and their bat flies (92, 98), 
with stains that can be very specific to bats or their respective bat flies only (21). In the 
present study, paired bat-arthropod-positive samples were found in three cases: two in 
My. capaccinii and its fly N. pedicularia, collected in Baziaş and one in M. schreibersii and 
the bat fly N. schmidlii, collected in Gura Dobrogei. Various strains isolated from bats were 
closely related to strains that can infect humans or rodents, as follows: B. mayotimonensis 
(20, 22, 31, 91), B. tamiae, B. baciliformis (97, 111, 112), B. rousetti (98), B. washoensis (113), 
or B. schoenbuchensis (102). The transmission routes of Bartonella strains between bats, 
their ectoparasites, and other hosts are still unknown. Bat flies, which are thought to be 
the main vector, do not parasitize on humans or other vertebrates, but it has been 
suggested that direct contact with bats or with their excretions (urine, saliva, feces) may 
be a possible route of Bartonella transmission (31, 114, 115). Furthermore, in countries 
where bats are consumed, or where contact is very close and physical interspecific 
interactions (bites or scratches) may occur, host-switches can happen (98).

Vector-borne diseases are constant and emerging problems in human and livestock 
health, recognized under the “One Health” paradigm (116, 117). In recent years, a 
number of new, different pathogens have been described in both animals and humans 
(118). This is also the case with the bacteria N. mikurensis, a new candidate from the 
family Anaplasmataceae, which was first described from rodents (Rattus norvegicus) and 
ticks (Ixodes ovatus) and assessed with unknown pathogenicity (32). Later, in 2010, there 
were case reports of the presence of N. mikurensis in human patients from Sweden, 
Germany, Switzerland, and China (19, 33, 48, 119). In Europe, this pathogen is transmit
ted mainly by the ubiquitous tick, Ixodes ricinus (120), the main vector for numerous 
vector-borne diseases (121), while in Russia it has been detected in I. persulcatus and 
a rodent host, Apodemus peninsulae (122, 123). The prevalence of infection with N. 
mikurensis in Europe varies from 0.08% (Dermacentor reticulatus) (124) to 100% in Ixodes 
spp. (likely I. ricinus larvae) (49). Various species of rodents are considered to be the main 
reservoir for this pathogen (37), but the natural cycle, geographical distribution, host 
reservoirs, or pathogenicity are still unclear and undetermined. In our study, we have 
detected the presence of a bacterium from the family Anaplasmataceae in the blood 
of the bat species M. schreibersii, but the route of infection is unknown. The most likely 
way is transmission by I. ricinus, which is a generalist tick and common parasite of many 
rodent species, but also bats. While it is rare on bats, it was already recorded as bat-par
asites in several instances (86). Our samples showed a 99% identity with sequences 
isolated from different rodent species, ticks, and humans. From a phylogenetic point of 
view, N. mikurensis forms its own cluster within the family Anaplasmataceae, which also 
includes Ca Neoehrlichia lotoris (125). Our analysis shows a possible reservoir role of bats 
in maintaining N. mikurensis in the environment (Fig. S5).

One of the smallest organisms discovered in bats and their ectoparasites is Myco
plasma spp., of which several species have been described in mammals, humans, 

TABLE 2 Number of positive samples for four pathogens

Pathogens detected
Type of 
sample

No. of positive sam
ples by high-throughput 
microfluidic PCR

No. of positive samples by 
confirmatory PCR/total no. 
of sample

Prevalence
for each pathogen following 
confirmatory PCRs

No. of positive paired-
blood ectoparasites’ (bat 
flies, ticks) samples

Bartonella spp.
Blood 18 8/48 16.66%

3
Bat flies 36 12/80 15%

Anaplasma spp.
(N. mikurensis)

Blood 7 5/48 10.41% -

Mycoplasma spp.
Blood 23 6/48 12.5% 1
Tick 5 1/80 2.08%

Apicomplexa Blood 31 1/48 2.08% -
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reptiles, fish, arthropods, and even plants (126). Because bats can harbor a variety of 
microorganisms that have little or no effect on their health, studies have focused on 
the detection of those organisms which may have a zoonotic importance, including 
the detection of these mollicutes in different types of samples collected from them. 
High prevalence of hemoplasmas have been found in the blood or tissue of different 
bat species, and the prevalence was ranging from 3.2% (62) to 97% (64). In Europe, 
there are two studies reporting the presence of Mycoplasma spp. in bats, particularly in 
the species M. schreibersii: the present study, which found a prevalence of 12.5%, and 
another from Spain (64), showing a much higher (97%) prevalence. The differences in 
the prevalence of infection between these studies may be due to different bat species, 
different habitats, different diets, and the genetic diversity of hemoplasmas present. 
While a higher prevalence of Mycoplasma spp. has been observed in bats in general, a 
lower prevalence has been reported in bat-associated ectoparasites (e.g., bat flies, ticks, 
and mites) (57, 63). These bacteria were previously detected in I. simplex collected from 
bats in China (57) (prevalence of 3.37%) but also in Hungary [prevalence of 0.7% (63)]. 
From the same bat tick (I. simplex), we had a single positive larva collected from a positive 
bat for Mycoplasma spp., and these results extend the knowledge of the geographical 
range of this pathogen in Europe. Phylogenetic analysis of the hemoplasma sequences 
revealed that those isolated from bats in Africa and Central and South America are similar 
among each other, while several different genotypes are circulating in these regions (56, 
59, 61, 62). The genotypes isolated from bats and their ectoparasites from USA, Spain, 
and Hungary cluster together with Ca. M. hemohominis and Ca. M. hemomuris (55, 63, 
64).

Most studies of intracellular parasites of bats focus on protozoan parasites, with an 
emphasis on piroplasms and hemosporidians (127, 128), especially in insectivorous bats 
(12, 79). While Babesia spp. has been described in bats in 1898 and has been identified as 
Babesia vesperuginis in several studies (12, 77, 78), Theileria spp. has only been detected 
in a few bat-derived samples. The first evidence of piroplasms in frugivorous bats was 
recorded in Pteropus rufus from Madagascar, where a prevalence of 4.43% was recorded 
(129). Later, another study showed a prevalence of 12.6% in frugivorous and omnivorous 
bats from Brazil, with the detected pathogens characterized as “Piroplasmid n. sp.” (from 
Phyllostomus discolor) and “Piroplasms sp.” (recorded from Artibeus spp. bats) (80). The 
only study reporting the presence of Theileria spp. (e.g., T. capreoli, T. orientalis, and 
Theileria sp. OT3) in ticks (larvae and females of Ixodes simplex) collected from insectivo
rous bats from Europe was conducted by Hornok et al. (81). The route of transmission 
and presence of these Theileria species is thought to be due to the tick Haemaphysalis 
spp. which happened to infest bats, too (81). In the present study, using confirmatory 
PCRs we detected only one positive sample for Apicomplexa targeting the 18S rRNA 
gene, which after sequencing proved to be Theileria spp. Our sequences clustered 
together with nine sequences of the 18S rRNA gene from Madagascar showed high 
similarity with other sequences from rodents, primates, and canid babesia, all belonging 
to the “microti group” (129), while the eight amplicon sequences analyzed from Brazil 
showed high identity with Theileria bicornis and three showed high identity with Babesia 
vogeli (80).

Due to the great diversity of bat species and their ectoparasites (ticks and bat flies), 
numerous pathogens (bacteria and parasites) can be spread among them and also 
among other animals and humans. Overall, in our study four pairing bat-arthropod 
samples were detected to be positive for two different bacteria: Bartonella spp. and 
Mycoplasma spp., which were recorded in high prevalences both in bats and their 
respective ectoparasites. In addition, here we present the first records of N. mikurensis 
and an undescribed Theileria spp. in the bat blood, thus providing further evidence 
in support of the role bats and their ectoparasites play in their respective epidemiol
ogy. In this ground-breaking study, we have advanced pathogen screening by employ
ing high-throughput microfluidic real-time PCR for the first time on bat samples and 
paired bat-arthropod samples. This technique allows comprehensive screening of diverse 
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pathogens, significantly reducing analysis time and advancing our understanding of 
vector-borne diseases in bats.

MATERIALS AND METHODS

Sample collection

Bat samples [blood (n = 48) and ectoparasites (n = 80)] were collected from four different 
locations in Romania: Baziaş, Canaraua Fetii, Ineu, and Gura Dobrogei, in autumn 2021 
and spring 2022. Mist nets and harp traps were used to capture the bats, and these 
were placed close to the entrance to their roosts. The bats were identified to species 
level using the available keys (3), and age, sex, forearm length, and body weight were 
recorded for each individual. In the present study, samples were collected from two 
insectivorous bat species: M. schreibersii [blood (n = 39), ticks (n = 19), and bat flies 
(n = 50)] and My. capaccinii [blood (n = 9), ticks (n = 1), and bat flies (n = 10)]. The 
difference between the numbers of samples collected from the two species resulted 
from the abundance of the bat species M. schreibersii as well as the presence of several 
ectoparasites and a high number in this particular species.

A drop of blood was taken from each bat by using venipuncture applied to the 
right saphenous (interfemoral) vein. Each sampled bat was physically immobilized, the 
uropatagium was disinfected with alcohol, and blood was taken from the uropatagial 
vein with 28-gauge needle. The blood was transferred onto the filter paper and then 
stored individually in a sterile tube. Each tube was individually labeled and stored at 
4°C until DNA extraction. Bat ectoparasites (ticks—Ixodoidea: Ixodidae and bat flies—
Diptera: Nycteribiidae) were also collected from the same individuals and stored in sterile 
tubes (type of ectoparasite/each bat) with 70% ethanol until further identification.

Ectoparasite identification

Identification of each ectoparasite was based on morphological keys (130, 131) using an 
Olympus Bx51 microscope.

Molecular detection of pathogens

DNA extraction

Before DNA extraction, each ectoparasite was cut in half with a sterile blade. They 
were then incubated with buffer and Proteinase K at 56°C for 24 hours. Total DNA was 
extracted from blood (n = 48) and ectoparasites (n = 80) using the QIAamp DNA mini kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. All samples were 
stored at −20°C until further analysis.

DNA preamplification for microfluidic PCR

To improve the detection of pathogens, a pre-amplification of total DNA was performed. 
For amplification, an equal volume of primers (except those targeting tick DNA and 
controls) was pooled at a final concentration of 200 µM. The total volume of the 
mixture was 5 µL, containing 1 µL of Perfect PreAmp Master Mix (Standard Biotools, 
San Francisco, CA), 1.25 µL of pooled primer mixture, 1.5 µL of distilled water, and 1.25 
µL of DNA. The following program was used for DNA amplification: one cycle at 95°C for 
2 minutes, 14 cycles at 95°C for 15 seconds and 4 minutes at 60°C. The samples were 
then diluted to 1/10 (addition of 45 µL of distilled water). The pre-amplified samples were 
stored at −20°C until further use.

Microfluidic PCR

High-throughput microfluidic real-time PCR was used to detect bacterial and parasitic 
pathogens. The total number of pathogens targeted was 27 bacterial species (Borrelia 
burgdorferi s.s., B. garinii, B. afzelii, B. valaisiana, B. lusitaniae, B. spielmanii, B. bissettii, B. 
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miyamotoi, Anaplasma marginale, A. platys, A. phagocytophilum, A. ovis, A. centrale, A. 
bovis, Ehrlichia canis, N. mikurensis, Rickettsia conorii, R. slovaca, R. massiliae, R. helvetica, R. 
aeschlimannii, R. felis, Bartonella henselae, Francisella tularensis, Francisella-like endosym
bionts, Coxiella-like endosymbionts, and Coxiella burnetii), five bacterial genera (Borrelia, 
Anaplasma, Ehrlichia, Rickettsia, and Mycoplasma), seven piroplasm species (Babesia 
microti, B. canis, B. ovis, B. bovis, B. caballi, B. venatorum, and B. divergens), and three 
higher piroplasm taxa (Apicomplexa, Theileria, Hepatozoon) (82, 132). Amplification was 
performed using 48.48 Dynamic Array IFC chips (Standard Biotools) in the BioMark 
real-time PCR system (Standard Biotools). In each chip, 48 samples were analyzed 
by real-time PCR against 48 targets in individual wells, resulting in 2,304 individual 
reactions. All amplifications were performed using 6-carboxyfluorescein (FAM)- and Black 
Hole Quencher (BHQ1)-labeled TaqMan probes with TaqMan Gene Expression Master Mix 
according to the manufacturer’s instructions (Applied Biosystems, Courtaboeuf, France). 
RT-PCR cycling program was as follows: 2 minutes at 50°C, 10 minutes at 95°C, followed 
by 40 cycles of two-step amplification of 15 seconds at 95°C, and 1 minute at 60°C. A 
negative water control was used for each chip. In addition, the DNA of Escherichia coli 
strain EDL933 was used for each sample as an internal inhibition control, together with 
primers and probes specific for the E. coli eae gene (82, 132).

Validation of microfluidic PCR results and DNA sequencing

Positive samples for Apicomplexa, Bartonella spp., N. mikurensis, and Mycoplasma spp. 
were selected for additional conventional and nested PCR assays targeting different 
genes or using different primers of the BioMark real-time PCR system. We paired the 
positive blood samples with those that were positive for at least one ectoparasite (tick or 
bat fly). We used primers for the 18S rRNA gene of Apicomplexa (12) and the 16S rRNA 
gene of Anaplasma spp. (123), Bartonella spp. (133), and Mycoplasma spp. (134) (Table 3). 
Positive samples were purified and sent to Eurofins MWG Operon (Ebersberg, Germany) 
and Macrogen (Macrogen Europe, Amsterdam, The Netherlands) for sequencing. The 
sequences were further analyzed and assembled using BioEdit software (Ibis Bioscien
ces, Carlsbad, Germany). All sequences obtained from bat samples were submitted to 
the GenBank database under the following accession numbers: OQ054993–OQ055014; 
OQ255847; OP999371–OP999375; OQ274904–OQ274910 (Table 1).

Phylogenetic and genetic distance analysis

To determine the identity and genetic diversity of each pathogen examined in this study 
(targeting 16S rRNA for Mycoplasma, Bartonella, Anaplasmataceae and 18S rRNA for 

TABLE 3 Set of primers used to validate microfluidic real-time PCR results

Pathogen/pathogens 
targeted

Target gene Name and primer sequence (5′–3′) Amplicon size Reference

Anaplasma spp./Ehrlichia 
spp.

16S rRNA

EHR1 (GAACGAACGCTGGCGGCAAGC)
EHR2 (AGTAYCGRACCAGATAGCCGC)

-

123
EHR3 (TGCATAGGAATCTACCTAGTAG)
EHR4 (AGTAYCGRACCAGATAGCCGC)

629 bp

Apicomplexa 18S rRNA

BTH-1F (CCTGAGAAACGGCTACCACATCT)
BTH-1R (TTGCGACCATACTCCCCCCA)

-

135
GF2 (GTCTTGTAATTGGAATGATGG)
GR2 (CCAAAGACTTTGATTTCTCTC)

561 bp

Bartonella spp. gltA
bart781 (GGGGACCAGCTCATGGTGG) bart1137 

(AATGCAAAAAGAACAGTAAACA)
380–400 bp 136

Mycoplasma spp. 16S rRNA

Myco184-F1 (ACCAAGSCRATGATRGRTAGCTGG)
Myco1310-R1 (ACRGGATTACTAGTG ATTCCAACT TCAA)

- 137

Myco322-F2 (GCCCATATTCCTACGGGAAGCAGCAGT)
Myco938-R2 (CTCCACCACTTGTTCAGGTCCCCGTC)

500 bp 138
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Apicomplexa), the sequences obtained were analyzed using the Basic Local Alignment 
Search Tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 10 March 2023). 
After identifying each sequence at the species level, a search was performed analyzing 
sequences of the same bacterial/piroplasm species with different hosts which were 
previously identified in different regions of the world. Sequences within the same 
bacterial/piroplasm species with different hosts were grouped for phylogenetic analysis. 
A second search was conducted comparing our sequences with others that were 
closely related or not at the species level and grouped for a second phylogenetic 
analysis. Each grouped sequence was then aligned with MUSCLE algorithm in MEGA 
11 (139). To construct initial phylograms, the maximum parsimony, neighbor joining, 
and maximum likelihood (ML) methods were used. Due to their similar topology, ML 
was used in the final analysis. Based on the lowest Bayesian Information Criterion and 
corrected Akaike Information Criterion, Kimura 2-parameter model was used to build the 
trees of Anaplasmataceae and Bartonella (comparing sequences at species level), while 
Jukes-Cantor model was applied to construct the host-species tree. Tamura 3-parameter 
model (T92) was used to build trees of Apicomplexa. Reliability of internal branches was 
assessed using the bootstrapping method with 500 replicates.

The sequences shown in the trees were grouped into haplotypes (genotypes) using 
the DnaSP software (Universitat de Barcelona, Spain, http://www.ub.edu/dnasp). To show 
the genetic diversity of the bacteria/piroplasms depending on the reservoir hosts, the 
Median Joining Network method available in POPArt software (University of Otago 
Popart, https://popart.maths.otago.ac.nz) was applied.
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