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Abstract In Europe, several species of bats, owls

and kestrels exemplify highly urbanised, flying verte-

brates, which may get close to humans or domestic

animals. Bat droppings and bird pellets may have

epidemiological, as well as diagnostic significance

from the point of view of pathogens. In this work 221

bat faecal and 118 bird pellet samples were screened

for a broad range of vector-borne bacteria using PCR-

based methods. RickettsiaDNAwas detected in 13 bat

faecal DNA extracts, including the sequence of a

rickettsial insect endosymbiont, a novel Rickettsia

genotype and Rickettsia helvetica. Faecal samples of

the pond bat (Myotis dasycneme) were positive for a

Neorickettsia sp. and for haemoplasmas of the

haemofelis group. In addition, two bird pellets (col-

lected from a Long-eared Owl, Asio otus, and from a
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Common Kestrel, Falco tinnunculus) contained the

DNA of a Rickettsia sp. and Anaplasma phagocy-

tophilum, respectively. In both of these bird pellets the

bones ofMicrotus arvalis were identified. All samples

were negative for Borrelia burgdorferi s.l., Fran-

cisella tularensis,Coxiella burnetii and Chlamydiales.

In conclusion, bats were shown to pass rickettsia and

haemoplasma DNA in their faeces. Molecular evi-

dence is provided for the presence of Neorickettsia sp.

in bat faeces in Europe. In the evaluated regions bat

faeces and owl/kestrel pellets do not appear to pose

epidemiological risk from the point of view of F.

tularensis, C. burnetii and Chlamydiales. Testing of

bird pellets may provide an alternative approach to

trapping for assessing the local occurrence of vector-

borne bacteria in small mammals.

Keywords Rickettsiales � Anaplasmataceae �
Francisella � Coxiella � Mycoplasma � Chlamydia

Introduction

Bats (Mammalia: Chiroptera) indigenous to Europe

are insectivorous, nocturnal mammals, which are well

known for their urban populations. During the past

decades the epidemiological significance of bats has

become increasingly recognised because they have

been reported to harbour a broad range of pathogens

(Klimpel and Mehlhorn 2014). On the other hand,

certain predatory birds, such as owls (Aves: Strigi-

formes) and kestrels (Aves: Falconiformes) also

invade cities but appear to be less studied from an

epidemiological point of view, despite the fact that

their most important prey, rodents, harbour a ‘‘dispro-

portionate number’’ of zoonotic pathogens (Han et al.

2015).

These three categories of highly urbanised, flying

vertebrates have ample occasions to get close to

humans or their pet and livestock animals. For

instance, several bat species are known to roost in

buildings (Klimpel and Mehlhorn 2014) or in sta-

bles (Dekker et al. 2013). Barn owls (Tyto alba) also

frequently choose stables and other man-made struc-

tures for nesting (Milchev and Gruychev 2014).

Eurasian kestrels live even in the centre of large cities

(Sumasgutner et al. 2014). In such scenarios, direct

contact of humans and domestic animals with bats,

owls and kestrels is less likely than indirect contact

through contamination of their common environment

with droppings (faeces) and pellets (i.e., the regurgi-

tated portion of prey items of predatory birds). For

instance, bat faeces or owl pellets may contaminate the

food of stable-kept animals (entailing the risk of

consequent oral infection) or may become gradually

aerosolised (promoting air-borne transmission of

pathogens with this infectious potential).

While the epidemiological risks posed by bat

droppings and bird pellets might be highest in the

case of extracellular pathogens, it was also shown to

be relevant to facultative and obligate intracellular

bacteria (as exemplified by Bartonella spp. and

Coxiella burnetii, respectively: Dietrich et al. 2017).

Nevertheless, detection of bacterial DNA in these

excreta may have yet another, i.e., diagnostic signif-

icance. In the case of vertebrates, which are hard to

access for blood sampling, and/or are highly protected

and possibly vulnerable to invasive sampling methods,

molecular analysis of their ‘‘products’’, such as faeces,

may prove to be a valuable diagnostic method in

surveys. Accordingly, a major step in the identification

of microorganisms associated with apes was achieved

when their faeces were shown to contain the DNA of

blood-borne pathogens (Keita et al. 2013). More

relevant to this study, the DNA of vector-borne

protozoa (Hornok et al. 2015a) and vector-borne

bacteria (Veikkolainen et al. 2014) are present in bat

droppings. The advantage of this method is that results

are obtained with non-invasive sampling but it also has

a drawback: the DNA in bat faeces may originate

either from the host itself (e.g., from cells crossing the

gut barrier towards the lumen, or if there is intestinal

bleeding), from bat intestinal parasites (e.g., flukes or

their eggs) or from gut food contents, e.g., ingested

insects (Hornok et al. 2015a; Veikkolainen et al.

2014). In this context, to the best of the authors’

knowledge, no scientific reports have described bird

pellets as sources of rodent-borne pathogen DNA.
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Thus, the aim of this study was to assess the

epidemiological and diagnostic importance of bat

faeces and bird pellets focusing on vector-borne

bacteria. Bats and urban predatory birds were sam-

pled, taking into account their synanthropic presence

and scarcity or lack of literature data on their

epidemiological significance in the context of vec-

tor-borne bacteria. Vector-borne bacteria were chosen

as the target group, because bats have access to these

in their food (Hornok et al. 2015a), and synanthropic

rodents (which are among the most frequent prey

items of predatory birds in cities) are significant

reservoirs of vector-borne bacteria (Hornok et al.

2015b).

Materials and methods

Sample collection

Between May and September 2014, 196 individual

and 25 pooled bat faecal samples were collected from

19 bat species (Table 1) at 38 locations in Hungary,

and at 10 locations in the Netherlands. These bats were

caught for monitoring purposes. After identification of

their species, they were held individually in sterile

paper bags until sufficient defecation occured. Pooled

bat faecal samples were collected from the top of

accumulated droppings under bat colonies. Faecal

pellets were stored frozen at - 20 �C until evaluation

(Hornok et al. 2015a). In addition, 118 owl and kestrel

pellet samples were collected from the resting sites of

4 bird species (Table 2) between February and Octo-

ber 2015. Bones of prey animals in bird pellets were

identified by a zoologist expert (Péter Estók).

DNA extraction and molecular analyses

DNA was extracted from bat faeces with the QIAamp

Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions. DNA

was extracted from the soft parts within owl/kestrel

pellets with the QIAamp DNA Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s

instructions (tissue protocol). All procedures included

an extraction control to monitor cross-contamination

of samples. The amount and purity of DNA in bird

pellet extracts were measured with a Thermo Scien-

tific Multiscan GO spectrophotometer (Thermo Fisher

Scientific, Vantaa, Finland). DNA concentrations and

purities of bird pellet extracts were broadly variable

(i.e., concentration of 3–295 ng/ll and purity of

1–2.23, respectively). All samples were tested for

the quantity and quality of DNA contents with a

TaqMan real-time PCR specific for the 18S rRNA

gene (Thermo Fisher Scientific, Vantaa, Finland;

Boretti et al. 2009). Samples were consequently used

in the dilution (undiluted, 1:10 or 1:100) yielding the

lowest Ct value.

Both bat faecal and bird pellet samples were

screened for the presence of DNA from Anaplasma

phagocytophilum, Neorickettsia risticii, Rickettsia

spp., Francisella tularensis, C. burnetii and Chlamy-

diales, according to the methods summarised in

Table 3. In addition, bat faecal DNA extracts were

also analysed for haemoplasmas, and bird pellets for

Borrelia burgdorferi s.l. (Table 3). The presence of

tick DNA in the Rickettsia helvetica-positive bat

faecal sample was excluded by a PCR, which amplifies

part of the 18S rRNA gene of Ixodidae (Hornok et al.

2015a).

Each PCR was run with positive and negative

controls (i.e., sequence-verified DNA extract of the

relevant agent and non-template reaction mixture,

respectively). Positive controls were always PCR

positive, whereas negative controls and extraction

controls remained PCR negative.

Sanger-dideoxy sequencing was attempted from

samples yielding the lowest Ct values. Sequences were

aligned and compared to reference GenBank

sequences using the nucleotide BLASTN program

(https://blast.ncbi.nlm.nih.gov). Representative

sequences were submitted to GenBank (accession

numbers: KP862896 [Neorickettsia sp.], MF347694

and MF347695 [Rickettsia spp.]). Phylogenetic anal-

ysis was conducted according to the Tamura–Nei

model and maximum likelihood method by using

MEGA 6.0.

Results

Bat droppings

Among bat faecal DNA extracts, 13 were real-time

PCR positive for rickettsiae (Table 1). In one sample

the sequence of a rickettsial endosymbiont (reported

from the fly species Medetera jacula: JQ925589) was
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identified (341/341 bp, i.e., 100% identity; Table 1).

From three further samples (collected in Hungary and

the Netherlands) a novel rickettsia genotype was

amplified, which had the highest similarity (333/

341 bp, i.e., 97.7%) to a Rickettsia genotype recently

detected in a rodent species (Apodemus flavicollis) in

Poland (KY488187) but was also relatively closely

related to Rickettsia felis (332/341 bp, i.e., 97.4%

identity). In addition, R. helveticawas identified with a

species-specific real-time PCR (Table 3) in one

pooled sample collected in Hungary.

All four samples of the pond bat (Myotis dasyc-

neme, collected in the Netherlands) were real-time

PCR positive for N. risticii. The 16S rRNA gene

sequence from these samples, designated Neorick-

ettsia sp. BF87, was 100% identical (273/273 bp) with

horse-derived isolates of N. risticii (e.g., AF380258)

and closely related Neorickettsia genotypes (e.g.,

KX818101 from bat-associated flukes), whereas it

had one nucleotide difference (272/273 bp, i.e., 99.6

identity) from N. risticii reported from bats (e.g.,

KX986616) and Neorickettsia isolates from flukes

(e.g., KX818100). These geographically diverse

sequences clustered together in the phylogenetic

analysis (Fig. 1).

Three of these M. dasycneme samples also con-

tained haemotropic Mycoplasma DNA, the species of

which could not be identified with sequencing

(Table 1). All samples were negative for F. tularensis,

C. burnetii and Chlamydiales.

Table 1 Results of bat faeces analyses

Bat genus

(number of

spp.)

Number

of

samples

Rickettsia spp. Neorickettsia risticii Mycoplasma spp.

(haemofelis group)

Real-time PCR

positive bat species

(country)

Identified

rickettsiaea

(accession

number)

Real-time PCR

positive bat species

(country)

Sequence

identity

(accession

number)

Real-time PCR

positive bat species

(country)b

Myotis (9) 135 2 9 M. daubentonii

(HU)

– 4 9 M. dasycneme

(NL)

100%

(KP862896)

3 9 M. dasycneme

(NL)

M. alcathoe (HU) Novel genotype

(MF347695)

M. alcathoe (HU) Fly endosymbiont

(MF347694)

Pipistrellus

(3)

18 P. pipistrellus (NL) – – – –

P. pipistrellus (HU) – – – –

Nyctalus (2) 30 – – – – –

Barbastella

(1)

6 B. barbastellus

(HU)

– – – –

Plecotus (1) 1 – – – – –

Rhinolophus

(2)

5 – – – – –

Miniopterus

(1)

1 – – – – –

Unknown

(pooled)

25 2 9 Unknown

(NL)

Novel genotype

(MF347695)

– – Unknown (NL)

4 9 Unknown

(HU)

R. helvetica

Data of vector-borne bacteria in a field are relevant to a single sample, unless otherwise indicated

HU Hungary, NL The Netherlands
aSequencing of rickettsiae was performed from samples with the lowest Ct values
bSequencing of haemoplasmas was unsuccessful
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Owl and kestrel pellets

Only two pellets were real-time PCR positive. One

sample, collected from a Long-eared Owl (Asio otus),

contained Rickettsia DNA, whereas the other,

obtained from a Common Kestrel (Falco tinnunculus),

was positive for A. phagocytophilum. Sequencing was

not possible due to the relatively high Ct values. Both

PCR-positive pellets were collected in Budapest

(Hungary) and contained the bones of the same rodent

species, M. arvalis (Table 2). All samples were

negative for B. burgdorferi s.l., F. tularensis, C.

burnetii and Chlamydiales.

Discussion

This is the first report of molecular analyses of a broad

range of vector-borne bacteria in bat faeces and bird

pellets. For the interpretation of the present results it

can be hypothesised that the DNA of vector-borne

bacteria in bat faeces may originate either from the

arthropod food of bats (having passed through the

entire gastrointestinal tract), from bat intestinal para-

sites (such as digenean flukes or their eggs) or from the

bats themselves (Hornok et al. 2015a), whereas vector-

borne bacteria in the inner parts of owl and kestrel

pellets derive from their prey (i.e., mostly small

mammals), taking into account that regurgitated

pellets are less digested than faeces and only their

surface comes into contact with the foregut.

Thus, the DNA of a fly endosymbiont Rickettsia sp.

in bat droppings can be explained by the presence of

those flies as food items in the diet of the relevant bat

species (M. alcathoe). On the other hand, the novel

Rickettsia genotype demonstrated here from bats both

in Hungary and the Netherlands may as well originate

from the tissues of bats, especially taking into account

that the Rickettsia sp. closest to this genotype was

formerly amplified from rodent blood (KY488187). In

Table 2 Collection data and contents of owl and kestrel pellets used in this study

Bird

category

Bird species Location in

Hungary (number

of samples)

Prey taxa identified according to bones in pellets

Rodentia Soricomorpha Chiroptera Aves

Owls Asio otus Budapest (27) Microtus arvalis, Mi. subterranus,

Micromys minutus, Myodes glareolus,

Apodemus sp., Mus sp.

Crocidura

suaveolens

- ?

Kisújszállás (14) Mus musculus - - -

Túrkeve (20) n.a. n.a. n.a. n.a.

Kiskunlacháza

(15)

Microtus arvalis, Apodemus agrarius, Mus

sp.

- - ?

Hajdúböszörmény

(14)

Microtus arvalis, Apodemus agrarius, Mus

sp.

- - -

Kelemér (1) n.a. n.a. n.a. n.a.

Tyto alba Sz}ol}osardó (9) Microtus arvalis, Arvicola amphibius Crocidura

suaveolens,

C. leucodon

Myotis

blythii,

M.

myotis

-

Viszló (1) Mus sp. Crocidura

suaveolens

- -

Strix aluco Budapest (5) Apodemus sp. - Eptesicus

serotinus

-

Diurnal

predators

Falco

tinnunculus

Budapest (12) Microtus arvalis, Apodemus sp. - - -

Prey species name identified in the two pellets, which were PCR positive for Rickettsia sp. or Anaplasma phagocytophilum, is written

in bold. The signs ‘‘?’’ or ‘‘-’’ indicate, respectively, the presence or absence of bones from a certain taxon

n.a. not available
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Table 3 Technical data and references of molecular methods used in this study

Target taxa (target gene, aim of

analysis)

Oligonucleotides (sequence 50–30) References: original

(modified) method

Anaplasma phagocytophilum

(Msp2, screening)

ApMSP2f (ATG GAA GGT AGT GTT GGT TAT GGT ATT)

ApMSP2r (TTG GTC TTG AAG CGC TCG TA)

ApMSP2p (TGG TGC CAG GGT TGA GCT TGA GAT TG-HEX)

Courtney et al. (2004) (Hornok

et al. 2016)

Neorickettsia risticii (16S rRNA,

screening)

ER. 133f (GTT ATT CCC TAC TAC CAG GCA AGT TC)

ER. 54r (AAC GGA ATC AGG GCT GCT T)

ER. 77p (FAM-ACG CAC CCG TCT GCC ACG GGA-TAMRA)

Pusterla et al. (2000)

Anaplasmataceae (16S rRNA,

sequencing)

EHR16SD (50-GGT ACC YAC AGA AGA AGT CC-30)

EHR16SR (50-TAG CAC TCA TCG TTT ACA GC-30)

Parola et al. (2000) (Hornok

et al. 2008)

R. helvetica (23S rRNA, screening) Rickhelv.147f (TTT GAA GGA GAC ACG GAA CAC A)

Rickhelv.211r (TCC GGT ACT CAA ATC CTC ACG TA)

Rickhelv.170p (6FAM-AAC CGT AGC GTA CAC TTA-

MGBNFQ)

Boretti et al. (2009)

Rickettsiaceae (gltA, screening) CS-F (TCG CAA ATG TTC ACG GTA CTT T)

CS-R (TCG TGC ATT TCT TTC CAT TGT G)

CS-P (FAM-TGC AAT AGC AAG AAC CGT AGG CTG GAT

G-BHQ)

Stenos et al. (2005)

Rickettsiaceae (gltA, sequencing) Rp877p (GGG GAC CTG CTC ACG GCG G)

Rp1258n (ATT GCA AAA AGT ACA GTG AAC A)

Roux et al. (1997)

Haemoplasmas (16S rRNA,

screening)

Sybr_For (AGC AAT RCC ATG TGA ACG ATG AA)

Sybr_Rev1 (TGG CAC ATA GTT TGC TGT CAC TT)

Sybr_Rev2 (GCT GGC ACA TAG TTA GCT GTC ACT)

Willi et al. (2009) (Hornok et al.

2014)

Bat haemoplasmas (16S rRNA,

sequencing)

HemMycop16S-41 s (GYA TGC MTA AYA CAT GCA AGT CGA

RCG)

HemMyco16S-938as (CTC CAC CAC TTG TTC AGG TCC CCG

TC)

HemMycop16S-322 s (GCC CAT ATT CCT ACGGGA AGC AGC

AGT)

HemMycop16S-1420as (GTT TGA CGG GCG GTG TGT ACA

AGA CC)

Mascarelli et al. (2014)

Borrelia burgdorferi s.l. (flagellin,

screening)

B.398f (GGG AAG CAG ATT TGT TTG ACA)

B.484r (ATA GAG CAA CTT ACA GAC GAA ATT AAT AGA)

B.421p (FAM-ATG TGC ATT TGG TTA TAT TGA GCT TGA

TCA GCA A-TAMRA)

Leutenegger et al. (1999)

Francisella tularensis (tul4,

screening)

Tul4F (ATT ACA ATG GCA GGC TCC AGA)

Tul4R (TGC CCA AGT TTT ATC GTT CTT CT)

Tul4P (FAM-TTC TAA GTG CCA TGA TAC AAG CTT CCC

AAT TAC TAA G-BHQ)

Versage et al. (2003)

Coxiella burnetii (IS1111a,

screening)

IS1111F (CCG ATC ATT TGG GCG CT)

IS1111R (CGG CGG TGT TTA GGC)

IS1111P (FAM-TTA ACA CGC CAA GAA ACG TAT CGC TGT

G-MGB)

Loftis et al. (2006)

Chlamydiales (16S rRNA,

screening)

panCh16F2 (CCG CCA ACA CTG GGA CT)

panCh16R2 (GGA GTT AGC CGG TGC TTC TTT AC)

panCh16S (FAM-CTA CGG GAG GCT GCA GTC GAG AAT

C-BHQ1)

Lienard et al. (2011)
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addition, R. helveticaDNAwas shown to be present in

bat faeces. This most likely means that the relevant

bat(s) harboured R. helvetica, because bats are not

known to feed on the arthropod vector and reservoir of

this Rickettsia species (i.e., Ixodes ricinus) and DNA

of I. ricinus was not detectable in that particular

sample. In support of this assumption, R. helveticawas

formerly demonstrated from bat flea (Hornok et al.

2012). Therefore, bats should be further evaluated as

potential reservoirs of R. helvetica.

N. risticii is the causative agent of equine neorick-

ettsiosis (formerly called Potomac horse fever)

(Vaughan et al. 2012). In digenean bat flukes this

species has an endosymbiotic nature, i.e., it is trans-

mitted vertically from the adult flukes to their eggs

(Gibson et al. 2005). Subsequent developmental stages

ensure the maintenance of N. risticii in the

intermediate hosts (aquatic snails, insects) and even-

tually in the final hosts (insectivorous bats) of flukes

(Vaughan et al. 2012). If horses inadvertently take up

Neorickettsia-carrier insects when grazing, they

become dead-end hosts in the life cycle and their

infection usually leads to pathological manifestations

such as acute diarrhoea, laminitis and abortion, with

up to 30% mortality (Vaughan et al. 2012).

Here Neorickettsia DNA was identified in the

faeces of the pond bat (M. dasycneme), which appears

to be the most significant finding of the present study.

Although the Neorickettsia sp. present in bat faeces

was identified by sequencing only a short portion of its

16S rRNA gene, the real-time PCR used here for its

detection is regarded as highly sensitive and specific

for N. risticii DNA, and is therefore the current

standard for the diagnosis of equine neorickettsiosis

Fig. 1 Phylogenetic tree of Neorickettsia spp. and genotypes,

based on partial 16S rRNA sequences. For each entry, GenBank

data are shown in the following order: species or isolate name,

country of origin, generic name of isolation source (when

available), finally accession number. The bat-related Neorick-

ettsia sp. identified in the present study is highlighted with red

fonts and bold accession number. Three phylogenetic groups,

which include their ‘‘type species’’ (N. risticii, N. sennetsu and

N. heminthoeca), are also indicated (i.e., encircled with dashed

line filled with different background colour, and labelled as A,

B or C, respectively). Branch lengths represent the number of

substitutions per site inferred according to the scale shown.

(Color figure online)
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(Taylor 2018). Coherent results of these twomolecular

approaches, as well as the phylogenetic clustering of

this bat-related Neorickettsia sp. with N. risticii

isolates (Fig. 1), suggest that it may belong to the

latter species. However, to confirm this, sequencing of

the complete 16S rRNA gene and/or another marker

would have been necessary, but this was beyond the

scope of the present study.

To the best of the authors’ knowledge, this is the

first molecular evidence on the occurrence of a

Neorickettsia sp., phylogenetically clustering with N.

risticii, in Europe. N. risticii and closely related

genotypes are geographically widespread. Phyloge-

netic studies on Neorickettsia spp. were hitherto

reported from North and South America, Australia,

China and South-East Asia, as well as from North

Africa, while molecular evidence on their presence in

Europe has been lacking (Vaughan et al. 2012;

Greiman et al. 2014, 2017). At the same time, isolated

cases with seropositivity to N. risticii have already

been published in France (Vidor et al. 1988) and the

Netherlands (van der Kolk et al. 1991), where

underlying epidemiological factors remained

unelucidated.

Bat fluke species harbouring N. risticii and closely

related species belong to genera Acanthatrium and

Lecithodendrium (Pusterla et al. 2003), which can be

found in European Myotis bats, including M. dasyc-

neme (Frank et al. 2015). PCR positivity in the present

case may have originated from fluke eggs containing

Neorickettsia DNA (while passing with bat faeces) or

perhaps from Neorickettsia DNA in infected cells

crossing the gut barrier of relevant bats, which may

also become horizontally infected (Gibson et al.

2005).

Haemoplasmas of the haemofelis group (unidenti-

fiable to the species level) were shown to be present in

the faeces of the same bat species, M. dasycneme.

Although haemoplasmas have been reported in the

blood of bats in Spain (Millán et al. 2015), to the best

of our knowledge, they have never been reported from

the faeces of bats. Haemoplasmas are known to pass

detectable DNA in the faeces of their feline host (Willi

et al. 2007), thus it is likely that relevant bats were

actually infected with the detected bacteria. This

implies that when/where blood sampling of bats is not

possible, their faecal pellets may also provide useful

data on their haemoplasma-carrier status. This is

especially important from the point of view of further

studies on bat haemoplasmas of the haemofelis group,

which were found to be closely related to human

haemoplasmas (Millán et al. 2015).

It is relevant in this context that several bat species

roost in large colonies, sometimes within buildings

(such as steeples), where the droppings of many

individuals can accumulate (Klimpel and Mehlhorn

2014). This may increase the epidemiological risks

associated with bat faeces. At the same time, in order

to assess infection prevalence of bat-borne pathogens,

bat dropping have to be sampled individually.

On the other hand, the resting sites of owls tend to

be more scattered and isolated from each other

(Milchev and Gruychev 2014), and in such places

usually the pellets of only one or two individuals

accumulate. However, predatory birds feed on a

variety of prey items captured in a large area and this,

in turn, may increase (by ‘‘concentrating’’ small

mammals into one place) the epidemiologic signifi-

cance of bird pellets. At the same time, because prey

items become mixed in bird pellets, the local preva-

lence of rodent-borne pathogens cannot be concluded

from these.

The pellets of two owl species analysed here

contained the bones of bats (Table 2). This shows

that owls may come into contact with bat-borne

pathogens and the epidemiological roles of bats and

owls might be interrelated.

Among owl and kestrel pellets only two samples

were PCR positive. This low rate of positivity was

unexpected, because it was also demonstrated here

that bird pellets contain detectable amount of DNA.

One of the main components of owl pellets is the skin

(most notably from rodents), which represents the

tissue of entry for vector-borne bacteria, and amedium

where they may persist. In particular, several species

of tick-borne bacteria were reported to be present in

the skin of rodents, as exemplified by A. phagocy-

tophilum (Svitálková et al. 2015) and Borrelia afzelii

(Szekeres et al. 2015). Although in the present study B.

burgdorferi s.l. DNA was not detected in bird pellets,

there was one sample PCR positive for A. phagocy-

tophilum and another for unidentifiable rickettsiae.

These findings indicate that, in places where rodents

are not available from trapping, relevant information

can potentially be drawn from bird pellets containing

the remnants of rodents.

F. tularensis, C. burnetii and bacteria from

Chlamydiales are known to occur in the evaluated
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countries (e.g., in Hungary: Gyuranecz et al. 2012a, b;

Kreizinger et al. 2015), and these bacteria may be

associated with bats and the prey items of predatory

birds (Gyuranecz et al. 2012a; Leulmi et al. 2016).

Therefore, the PCR negativity of all samples analysed

here suggests that in the evaluated regions bat

droppings and bird pellets do not pose high epidemi-

ological risk in the context of these bacteria (i.e., for

the oral transmission of F. tularensis or for airborne

transmission of C. burnetii; the transmission modes of

many representatives of Chlamydiales remaining

unknown) (Burnard et al. 2017).

In conclusion, bats were shown to pass rickettsia

and haemoplasma DNA in their faeces. Neorickettsia

DNA is present in the faeces of the pond bat (M.

dasycneme) in Europe, suggesting that this bat species

plays a final host role in the life cycle of flukes

harbouring neorickettsiae. On the other hand, bat

faeces and owl/kestrel pellets near human beings or

pet and livestock animals (e.g., in barns) do not appear

to pose high epidemiological risk from the point of

view of vector-borne bacteria with alternative modes

of spreading (F. tularensis, C. burnetii and bacteria

from Chlamydiales). Concerning the diagnostic

importance of the samples analysed here, e.g., for

evaluating the presence of vector-borne bacteria in

small mammals, bird pellets can be used as substitutes

for trapped rodents (or at least could be evaluated in

parallel with the latter sample type).
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